

Preparation of Optically Active Epiderstatin and Its Stereoisomers—Epiderstatin is Not a Real Inhibitor of the Mitogenic Activity Induced by Epidermal Growth Factor—

MAKOTO UBUKATA,^{*,†,††} B. RADHA RANI,[†]
CHENG-BINI CUI[†] and HIROYUKI OSADA[†]

[†]The Institute of Physical and Chemical Research (RIKEN),
Wako, Saitama 351-01, Japan

^{††}Biotechnology Research Center,
Toyama Prefectural University,
Kosugi-machi, Imizu-gun, Toyama 939-03, Japan

(Received for publication June 1, 1995)

Epiderstatin (**1a**) was isolated from a culture broth of *Streptomyces pulveraceus* as an inhibitor of mitogenic activity induced by epidermal growth factor (EGF)^{1,2)} and was also reported to reverse the morphology of *src^{ts}*-NRK cells from the transformed phenotype to the normal phenotype at the permissive temperature (32°C).³⁾ Using NMR, X-ray crystallographic analysis, COSMIC (Computation and Structure Manipulation In Chemistry) force field calculation and circular dichroism, we established the absolute structure of epiderstatin (Fig. 1).⁴⁾ Since it was isolated in very minute quantity, we undertook a total synthesis of (±)-epiderstatin.⁵⁾

In the course of our study on structure-activity relationship within epiderstatin analogues,⁶⁾ we needed to prepare optically active epiderstatin as an authentic sample. Enough amounts of (±)-epiderstatin and its C₃-epimer for optical resolution were prepared according to a practical method reported by Dow *et al.*⁷⁾ Optical resolution of each analogue was carried out by chiral HPLC to give optically pure epiderstatin (**1a**) and its stereoisomers, (**1b**), (**2a**), (**2b**).

The absolute configurations of synthetic epiderstatin and its stereoisomers, **1a**, **1b**, **2a**, **2b**, were determined by NMR and CD analyses (Fig. 1). The absolute configurations of C₃/C₅ *trans* isomers, **1a** and **1b** were determined by the comparison of their Cotton effects, $\lambda_{287} + 1.78$ ($\Delta\epsilon$) for **1a** and $\lambda_{287} - 2.15$ ($\Delta\epsilon$) for **1b** with the data ($\lambda_{287} + 1.78$) of natural epiderstatin⁴⁾. The absolute configurations of *cis* isomers, **2a**, **2b**, could be determined by their Cotton effects ($\lambda_{288} + 2.60$ ($\Delta\epsilon$) for **2a**, $\lambda_{288} - 2.20$

($\Delta\epsilon$) for **2b**) and the application of allylic axial chirality approach⁴⁾ at C₅ axial protons which were deducible from the large coupling constant value (12.7 Hz) between 4-H and 5-H for each isomer (Fig. 2).

After separation and characterization of each isomer, we examined the flat reversion activities on *src^{ts}*-NRK cells, the cell cycle inhibitory activities on tsFT-210 cells, effects on [³H]thymidine uptake into EGF-stimulated Balb/MK cells and antifungal activities. Surprisingly, any isomer including synthetic epiderstatin did not induce the flat reversion of the *src^{ts}*-NRK cells.

To elucidate the reason why optically pure synthetic epiderstatin did not induce the flat reversion of *src^{ts}*-NRK cells, we inspected the original ¹H NMR chart of natural epiderstatin¹⁾ and found tiny signals due to a secondary methyl (δ 1.02, d, $J=6.9$ Hz) and a tertiary methyl (δ 2.0, s) groups, which could be assigned respectively to the C₃-methyl and C₅-acetyl methyl protons of acetoxy-cycloheximide.^{8,9)} From the integration of the signals, it was considered that approximately 10% of acetoxy-cycloheximide were contaminated in the sample. This was further supported by the result of chiral HPLC analysis followed by biological examinations. In the chiral HPLC, the contaminant, acetoxy-cycloheximide, was also clearly detected and after separation by the same way, natural epiderstatin lost the strong activity on the morphology reversion. On the other hand, the synthetic epiderstatin including 10% of acetoxy-cycloheximide showed activity on flat reversion of *src^{ts}*-NRK cells. However the synthetic epiderstatin did not show any synergistic effect on acetoxy-cycloheximide (Table 1). All stereoisomers including synthetic epiderstatin did not inhibit [³H]thymidine uptake into EGF-stimulated Balb/MK cells at the dose below that showed cytotoxicity. Also, synthetic epiderstatin and its stereoisomers, **1b**, **2a** and **2b** did not show any effects on the cell cycle of the tsFT-210 cells and antifungal activities against *Piricularia oryzae*.

From the results above mentioned, all the effects of epiderstatin previously reported such as inhibition of the signal transduction of EGF stimulated BALB/MK cells,¹⁾ induction of the flat reversion activity of *src^{ts}*-NRK cells,³⁾ inhibition of the blastogenesis of mouse spleen cells,¹⁰⁾ overexpression of *c-fos* and the suppression of *c-myc* transcription in EGF stimulated BALB/

Fig. 1. Structures of epiderstatin and its stereoisomers.

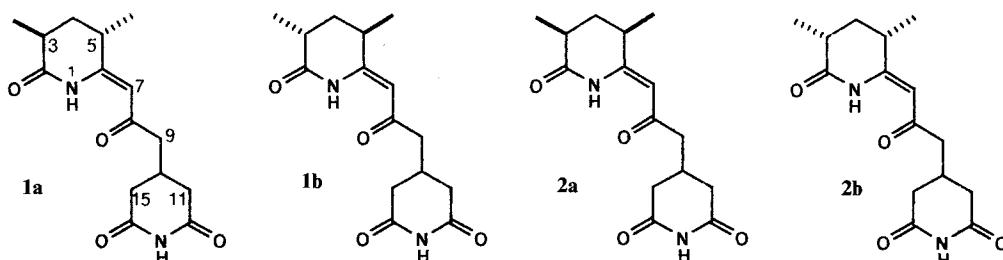


Fig. 2. Molecular conformation of **2a** calculated on Nemesis program.

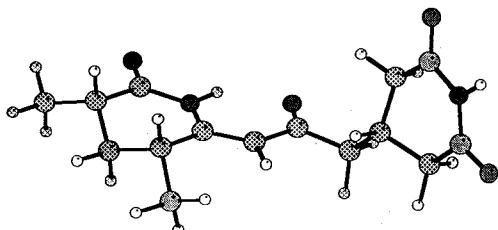


Table 1. Effects of epiderstatin analogues on the flat reversion of *src^{ts}*-NRK cells.

Compound	Minimal effective value (μ g/ml)
1a (synthetic)	>50
1a (natural)	0.003*
1a (natural, after chiral HPLC)	5
ACHI	0.005
1a (syn): ACHI 10:1	0.05
1b	>50
2a	>50
2b	>50

* Reported value.³⁾ The assay were done as a previously described method.³⁾ ACHI: acetoxyheximide.

MK cells,¹¹⁾ could be ascribed to the presence of acetoxyheximide as a contaminant.

Experimental

General Methods

Melting points were obtained using a Yanagimoto micro-melting point apparatus and were uncorrected. Optical rotations were taken on a JASCO DIP-370 polarimeter. IR spectra were recorded on a Shimadzu FTIR-8100M fourier transform infrared spectrophotometer. CD spectra were measured on a JASCO J-270 spectropolarimeter. ¹H and ¹³C NMR were measured on JEOL EX-270, α -400 and GSX-500 instruments. MS were measured on Hitachi M-80 and JEOL HX-110 mass spectrometers.

Analytical HPLC was carried out on a Waters 600 multisolvent delivery HPLC system equipped with a Waters 990J photodiode array detector. Preparative HPLC was carried out on a HPLC system equipped with a Hitachi L-6000 pump, a SSC UV detector and a SSC-2100 oven.

Epiderstatin (**1a**), (*3R,5R*)-isomer (**1b**), (*3S,5R*)-isomer (**2a**), (*3R,5S*)-isomer (**2b**)

Optical resolution of (\pm)-epiderstatin which was prepared by a previously described method⁷⁾ was carried out by chiral HPLC (CHIRALPAK AS, 10 \times 250 mm; hexane - EtOH (55:45), Flow rate 2.3 ml/minute; detector wave length, 295 nm; temperature, 25°C); retention time (Rt) for **1a**, 23.6 minutes; Rt for **1b**, 31.1 minutes.

Compound **1a**: MP 168~169°C; $[\alpha]_D^{24} -7.5^\circ$ (*c* 0.85, CH_2Cl_2); EI-MS *m/z* 292 (M^+); ¹H NMR (CD_2Cl_2 , 400 MHz) δ 1.24 (3H, d, *J*=6.8 Hz, 3-CH₃), 1.29 (3H, d, *J*=7.3 Hz, 5-CH₃), 1.82 (2H, m, H-4), 2.22 (2H, dd, *J*=17.3, 10.5 Hz, H-11ax and H-15ax), 2.48 (1H, d, *J*=6.3 Hz, H-9), 2.69 (1H, dd, *J*=17.3, 6.3 Hz, H-15eq), 2.60~2.75 (3H, m, H-5, H-3 and H-10), 2.70 (1H, dd, *J*=17.3, 4.4 Hz, H-11eq), 5.24 (1H, s, H-7), 8.20 (1H, brs, 13-NH), 11.54 (1H, brs, 1-NH). Compound **1b**: MP 153~154°C; $[\alpha]_D^{24} +7.1^\circ$ (*c* 0.86, CH_2Cl_2). Optical resolution of *C*₃-epimer of (\pm)-epiderstatin which was prepared by a previously described method⁶⁾ was carried out by chiral HPLC (CHIRALPAK AS, 10 \times 250 mm; hexane - EtOH (60:40), Flow rate 2.4 ml/minute; detector wave length, 295 nm; temperature, 25°C); Rt for **2a**, 30.1 minutes; Rt for **2b**, 37.3 minutes. Compound **2a**: MP 211~218°C; $[\alpha]_D^{28} -3.2^\circ$ (*c* 1.0, CH_2Cl_2); EI-MS *m/z* 292 (M^+); UV λ_{max} nm (log ϵ) 295 (4.13); ¹H NMR (CD_2Cl_2 , 400 MHz) δ 1.21 (3H, d, *J*=6.8 Hz, 3-CH₃), 1.22 (3H, d, *J*=6.8 Hz, 5-CH₃), 1.51 (1H, dt, *J*=13.2, 12.7 Hz, H-4ax), 1.95 (1H, ddd, *J*=13.2, 4.9, 4.3 Hz, H-4eq), 2.32 (2H, dd, *J*=17.8, 11.0 Hz, H-11ax and H-15ax), 2.50 (1H, d, *J*=6.3 Hz, H-9), 2.63~2.75 (4H, m, H-11eq, H-15eq, H-3 and H-5), 2.50 (1H, d, *J*=6.3 Hz, H-9), 2.54 (1H, m, H-10), 5.29 (1H, s, H-7), 8.24 (1H, brs, 13-NH), 11.76 (1H, brs, 1-NH). Compound **2b**: MP 202~204°C; $[\alpha]_D^{28} +2.1^\circ$ (*c* 0.86, CH_2Cl_2).

Acknowledgments

We wish to thank Miss E. ONOSE for her excellent technical support. We also thank professor K. ISONO of Tokai University for his encouragement. A part of this work was supported by a Grant from Biodesign Research Program in RIKEN.

References

- 1) OSADA, H.; T. SONODA, H. KUSAKABE & K. ISONO: Epiderstatin, a new inhibitor of the mitogenic activity induced by epidermal growth factor I. Taxonomy, fermentation, isolation and characterization. *J. Antibiotics* 42: 1599~1606, 1989
- 2) SONODA, T.; H. OSADA, M. URAMOTO, J. UZAWA & K. ISONO: Epiderstatin, a new inhibitor of the mitogenic activity induced by epidermal growth factor II. Structure elucidation. *J. Antibiotics* 42: 1607~1609, 1989
- 3) OSADA, H.; M. SASAKI, T. SONODA & K. ISONO: Epiderstatin induced the flat reversion of NRK cells transformed by temperature-sensitive Rous sarcoma virus. *Biosci. Biotech. Biochem.* 56: 1801~1806, 1992
- 4) SONODA, T.; K. KOBAYASHI, M. UBUKATA, H. OSADA & K. ISONO: Absolute configuration of epiderstatin, a new glutarimide antibiotic produced by *Streptomyces pulvigeraceus*. *J. Antibiotics* 45: 1963~1965, 1992
- 5) UBUKATA, M.; T. SONODA & K. ISONO: Synthesis of (\pm)-epiderstatin. *Natural Product Letters* 1: 149~154, 1993
- 6) RANI, B. R.; C.-B. CUI, M. UBUKATA & H. OSADA: Thiazoline analogues of epiderstatin, new inhibitors of cell cycle of tsFT-210 cells. *J. Antibiotics* 48: 1179~1181, 1995

7) Dow, R. L.; M. A. HAIN & J. A. LOWE III: Total synthesis and stereochemical assignment of (\pm)-epiderstatin. *Tetrahedron Lett.* 33: 309~312, 1992

8) RAO, K. V. & W. P. CULLEN: E-27: An antitumor substance. Part I. Isolation and characterization. *J. Am. Chem. Soc.* 82: 1127~1128, 1960

9) RAO, K. V.: E-27: An antitumor substance. Part II. Structure. *J. Am. Chem. Soc.* 82: 1129~1132, 1960

10) SONODA, Y.; H. OSADA, J. MAGAE & K. ISONO: Epi-derstatin and its related glutarimide antibiotics inhibit the cell growth induced by mitogen stimulation. *Agric. Biol. Chem.* 54: 1259~1263, 1990

11) OSADA, H.; K. KIKUCHI, F. MAKISHIMA & K. ISONO: Inhibitory action of epiderstatin on EGF-stimulated growth of mouse epidermal Balb/MK cells without direct effect on protein kinase activities. *Oncology Research* 6: 11~17, 1994